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OOD has a very close relationship with
several research area

* 1.transfer learning, domain adaptation, Multi-task learning
 2.causal learning, counterfactuals

* 3.robust learning (worst-case generalization)

* 4. disentangle

* 5. meta learning, zero-shot learning

* 6. long-tall

* /. lifelong learning, continue learning, online learning



The big picture of OOD generalization

* Domain generalization bound
* H-divergence bound [abuquerque2019GeneralizingTu]

e Kernel bound (ianchard202100mainGe]
* Information theatrical lower bound [zhac20190n0]
* Recent progress [ve2021TowardsAT, Federici2021AnIA]

* [nvariant feature learning
* [nvariant risk minimization (IRM) and a dozen of its variants
* The risk of IRM

* |[FM--Provable out-of-distribution generalization with Logarithmic
Environments



The background of Invariant Risk Minimization

* Data generating process:
* Assume data are drawn from a set of E training environments € = {e,, e,, ..., eE}
1, w.p.
Label y = {—1, otbel;‘rjl?/]be
Invariagt featuredzc~N(y - U, 1), spurious feature z,~N(y - u,, 6Z1)
*u. R, u, R
+ X = f(2, 2,)
* Model:

* Feature extractor: @, classifier 5
* y =0(B'P(X))
* Goal:
* Make prediction relying on invariant feature z,

* min R8E+1((D, f) where R (D,6) = IE(x,y)fvpe [l(U(IBTCD(x)))]



The prOpOsa\ of IRM [Arjovsky2019InvariantRM]

* Review several methods: (They fail to discover the invariant feature)
* 1. Empirical Risk Minimization (ERM)
* Objective: min%}]eegﬂee (D, B)
* Comments: rely on z,
* 2. Minimization on the worst case
* minmax,ce R¢(P, L) —r
Proposition 2. Giwen KKT differentiability and qualification conditions, I\, > 0
such that the minimizer of R™P is a first-order stationary point of > ece, NeRE(f).

* Comments: also rely on z,



IRM

* Goal :
* How to make feature extractor only rely on invariant feature z,?

* find a data representation such that the optimal classifier on top of that
representation matches for all environments.

* Objective:
* Ming,p = Teee R (P,8) 5.t. B € argming R° (d,f) Ve €€ (4)

* Practical version:

. minl?llzeeg[fk‘B (D, B) + A||V3RQ(CI>,,B)||§] (R€(P, ) is convex since B is

linear classifier)



An analysis on invariant principle anaoztinvarancesm

Motivation:
Despite the promising theory, why invariance principle-based approaches fail in common classification tasks

Key point:
1.Revisit the fundamental assumptions in linear regression tasks and show that for linear classification tasks
we need much stronger restrictions on the distribution shifts

Main results:

Task Invariant features upport overlap  Support overlap OOD generalization guarantee (&, — &)
apture label info” invariant features spurious featureS ERM IRM IB-ERM IB-IRM
Full/Partial No Yes/No Impossible for any algorithm to generalize OOD [Thm?2)]
Full Yes No X X v v [Thm3 4]
Partial Yes No X X X v [Appendix|
Full Yes Yes v/ v/ v/ v [Thma3,4]
Partial Yes Yes X v X v
inear Full No No v v v v
egre;&[ion Partial No No X 4 X v [Thmd]

N—
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Understanding the tailures case for classification task

Key idea:
Whether the invariant feature fully capture the information
about the label?

Y L X" (X) vs. YV L X¢|®*(X)

fully informative invariant features vs. partially informative invariant features
(FIIF vs. PIIF)

(a) FIIF (this work) (b) PIIF [Arjovsky et al., 2019] (c) PIIF [Rosenfeld et al., 2021b]
An analysis on invariant principle 10



Linear classitication structural equation model

invs “spu

1
Y€ Wwih, - Zi) ®N¢, N~ Bernoulli(g), ¢ < 1 N¢ 1L (Z5,, Zs ) (5)
X€  S(Z6, 7

invo spu)v

where w € R™ with ||[w? | =1 is the labelling hyperplane, Z¢ € R™, ZE € R?, N€¢ is binary

inv inv inv spu
noise with identical distribution across environments, & is the XOR operator, S is invertible.

Contrast with Invariant feature ZC~N(y ‘U, a%l), spurious feature z,~N(y - u,, 62I) mentioned before.

An analysis on invariant principle 11



Theorem 2—the importance of z;,,,overlap

Theorem 2. Impossibility of guaranteed OOD generalization for linear classification.
Suppose each e € E,y follows Assumption 2. If for all the training environments &, the latent
nvariant features are bounded and strictly separable, i.e., Assumption 3 and 7 hold, then every
deterministic algorithm fails to solve the OOD generalization (eq. (1)), i.e., for the output of every
algorithm e € E,; in which the error exceeds the minimum required value q (noise level).

Assumption 3. Bounded tnvariant features. U.cg, Z<  1s a bounded set.?

Assumption 4. Bounded spurious features. Uccg, Zg,, is a bounded set.

*A set Z is bounded if 3M < oo such that Vz € Z,||z|| < M.

Assumption 5. Invariant feature support overlap. Ve € &y, Z5, C UelegtTZﬁ]’v

Assumption 6. Spurious feature support overlap. Ve € Eqi, Zg,, C UefegtrZ§;u

Assumption 7. Strictly separable invariant features. Inv-Margin > 0.

An analysis on invariant principle 12



Theorem 3—whether zg,,, matters

Theorem 3. Sufficiency and Insufficiency of ERM and IRM. Suppose each e € Eyy follows
Assumption 2. Assume that a) the invariant features are strictly separable, bounded, and satisfy
support overlap, b) the spurious features are bounded (Assumptions 3-5, 7 hold).

e Sufficiency: If the spurious features satisfy support overlap (Assumption 6 holds), then both
ERM and IRM solve the OOD generalization problem (eq. (1)). Also, some of the ERM and IRM
solutions rely on the spurious features and still achieve OOD generalization.

e Insufficiency: If spurious features do not satisfy support overlap, then both ERM and IRM
fail at solving the OOD generalization problem (eq. (1)). Also, the classifiers that solve the OOD
generalization problem do not rely on spurious features at all.

. FIr+ Positive half of
Inv training support

w* W
inv Z zﬁ'.— Negative half of
nv inv training support

wt, . i i
inv O O test Faiure on test That is different from linear regression task.

Inv  support

1
Sinv

An analysis on invariant principle
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The risk of IRM In linear case roseneid021mero;

* Theorem 5.1 (Linear case). Assume f is linear. Suppose we
observe E training environments. Then the rollowing hold:

1. Suppose E > d.. Consider any linear featurizer ® which is feasible under the IRM objective (4),
with invariant optimal classifier 3 # 0, and write ®(f(z., z.)) = Az. + Bze. Then under mild

non-degeneracy conditions, it holds that B = 0. Consequently, (3 is the optimal classifier for all
possible environments.

2. If E < d. and the environmental means . are linearly independent, then there exists a linear
d—where O(f(zc, 2ze)) = Az + Bze with rank(B) = d. + 1 — E—which is feasible under the

IRM objective. Further, both the logistic and 0-1 risks of this ® and its corresponding optimal B
are strictly lower than those of the optimal invariant predictor.

The risk of IRM
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Proof of Theorem 5.1

* Key Idea:
* Construct a example that ® depends on the environment while the optimal
classifier f for each environment is constant.

* Linear classifier to separate two gaussian
* 1.define CD(X) — [ZC, pTZe] where Ve € &, pTue — O'e2 ﬁ flis a fixed scalar
* 2 pTzly~N(y - pTi,lIpll308) = N(y - 04 fi, 68)

* 2. For separating two Gaussians, the optimal linear classifier Is
>~ Y(u,— pg) =the optimal classifier is 2ji



Whole proof of Theorem 5.1 —lemma C.1

Lemma C.1. Suppose we observe E environments £ = {eq, ea,...,eg}, each with environmental
mean of dimension d, > E, such that all environmental means are linearly independent. Then there

IS a unique unit-norm vector p such that
T 2~
P pe =0, Ve € &,
where [i is the largest scalar which admits such a solution.

Proof. Letvy,va,..., vp be a set of basis vectors for span{ 1, 2, .. ., ik }. Each mean can then

) ) ) )

be expressed as a combination of these basis vectors: u; = ) j—1 ijvj. Since the means are linearly
independent, we can combine these coefficients into a single invertible matrix

11 21 OFE1

X192 99 (09 DD)
U =

1 E 2FE OFE

We can then combine the constraints (11) as

where p,, denotes our solution expressed in terms of the basis vectors {v; }Z_ ;. This then has the

solution
pa=U"To. The risk of IRM

(1D

the unigue maximizing solution Is

E
P = Z'i:l PaiUi.

U Te b 1
pa — ) W1 — R
[U-Ta; U T,

17



Whole proof of Theorem 5.1—lemma C.2

Lemma C.2. Assume f is linear. Suppose we observe E < d. environments whose means are
linearly independent. Then there exists a linear ® with rank(®) = d. + d. + 1 — E whose output
depends on the environmental features, yet the optimal classifier on top of P is invariant.

High level idea: Construct a feature extractor @ such that it relies on spurious feature while we can find an
optimal classifier which is the same for all environments.

When FE = d. p(y | Zcy 26) - p](j(z Z;Z)/)
I O B CH (& ) 3
b = {0 M] o f! _ o(y - Beze)p(Ze | y - 0, 07)
[O(y : BZZ(;)p(E(g | Y- ‘7((52/17(7(23) + U(_y ' 632(:)17(26 ‘ -y~ 0.(2:2/1’ 0'3)]
L oy - B(TZ() exp(y - Zeft)
— pT [o(y - BLze)exp(y - Zeft) + o(—y - BEzc) exp(—y - Zefi)]
— 0 — _ ! .
M = , ' 1 +exp(—y - (BLzc +22.41))
: B(z) = [ 2 ]
— 0 — P Ze the optimal classifier is 5 = [25“]

18
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Whole proof of Theorem 5.1—lemma C.2

* When E < d,

* |f we remove one of the environmental means, since they are
linearly iIndependent, we can simple redefine M as

- ])T
— g )/T
M — 0

— 0 —

Thus, removing one environment increases the rank of ® by 1.
Recursively, we constructed a feature extractor ® with rank d, + 1 — (d, — E)
that relies on spurious feature.



Whole proof of Theorem 5.1 —lemma C.3

Lemma C.3. Suppose we observe E environments £ = {ey,ea,. .., e } whose parameters satisfy

the non-degeneracy conditions @ @). Let ®(x) = Az. + Bz, be any feature vector which is a

linear function of the invariant and environmental features, and suppose the optimal [3 on top of P is
invariant. If E > d., then = 0 or B = (.

Non-degeneracy condition:

Proof. Write ® = [A|B] where A € R%*4 B € R%*% and define

fle = P ZC] = Apic + B,

B P
$, =@ |%ld 0 ] o7 = 02AAT + o2BBT.

20



Whole proof of Theorem 5.1 —lemma C.3

B =2(02AAT + 62BBT) Y (Ap. + Bpe)
— (62AAT + o?2BBT)3 = 2Ap. + 2B
S O'SBBTB — 2B e = 2Au, — UEAATBA.

FIl FHNon-degeneracy condition 15 2|&ZMN%ERB =0

The risk of IRM
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The risk of IRM In non-linear case

Theorem D.3 (Non-linear case, full). Suppose we observe E environments £ = {e1,es,...,egp}.
Then, for any € > 1, there exists a featurizer ®. which, combined with the ERM-optimal Class1ﬁer

ﬁ 1B, Be:ErM, 50] , satisfies the following properties, where we define p. 4. := exp{—d. min((e—

1), (e = 1)%)/8}:

1. Define 02, = max. c2. Then the regularization term of ®, B is bounded as

max

I Z ”v Re 6’ )”2 = O (pe de [Edeaﬁlax eXp{QeU?nax} + ”M”%]) )

2. ®., 3 exactly matches the optimal invariant predictor on at least a 1 — p. 4, fraction of the
training set. On the remaining inputs, it matches the ERM-optimal solution.

The risk of IRM
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The risk of IRM In non-linear case

Further, for any test distribution with environmental parameters (g1, 0125 1), suppose the environ-
mental mean |1 is sufficiently far from the training means:

Ve € gu min |‘ME+1 — Y- Me”Q 2 (\/E_I_ 5)06 V de (15)
ye{£1}
for some 6 > 0. Define the constants:
2
k = min ;‘e
ec& OE+1
2F

= —ké&%}.
1= 7= exp{—kd~}

Then the following holds:

3. P, B is equivalent to the ERM-optimal predictor on at least a 1 — q fraction of the test
distribution.

4. Under Assumption|l, suppose it holds that
PE+1 = — Z Qe fle (16)
ecf

for some set of coefficients {c.}ccs. Then for any c € R, so long as

2 2 /2
e c 2
5 g el Lnel/? + Lfol/2 + commu .

ec& Te 1= v

the 0-1 risk of ®., /3 is lower bounded by F(2¢) — q.

23



Proof of Theorem 6.1(D.3)

* Key Idea:
* Construct @ and  which is almost identical to the optimal invariant predictor
on the training data yet behaves like the ERM solution at test time.

e Standard concentration results

* 1.Define B to be the union of balls centered at each i, which contains
most of the samples from that environment. We can bound the
measure of B, = R%\B by at most p.

e 2. Define ®(x)=[z.] in B and ®(x)=[z.,z.]" in B.. When the new
environment feature ue,, Is far away from B, the proof is completed
since this model differs from ERM solution at test time by at most p.



Proof of Theorem 6.1 —lemma D.1

Lemma D.1. Suppose we observe environments £ = {e1, ea,...}. Given a set B C R, consider
the predictor defined by Equation 19. Then for any environment e, the penalty term of this predictor

in Equation 5 is bounded as
2

2

IV5R (@, 8)13 < |z € B[] | € B
The lemma shows that since only the environmental features contribute to the gradient
penalty, the penalty can be bounded as a function of the measure and geometry of that set.

Proof. We write out the precise form of the gradient for an environment e:

~

VBRG((I)vB) = P°(2c, 2¢) U(BT(I)(f(ZCa ze))) =P (Y = 1] 2¢, 2e) | P(f(2¢, 2e)) d(ze, 2e).
ZXZe

l ze AL 2o | v
/ pe(zcs Ze) [0-(3"3312(: + ;‘3()) - I)C(U =1 ’ Zey :e)] [O] d(zca 36)
Z.XB

n / P (2ze, ze) [U(I,BZ:C + V,BE?ERM ze + Bo) — (BT 2o + BTz + Bo)| [ze] d(ze, ze). 75
Z.x B¢



Proof of Theorem 6.1 —lemma D.?

Lemma D.2. For a set of E environments £ = {ej,ea,...,eg} and any € > 1, construct B,
as in Equation 18 and define ®. us‘zng B, as in Equation @ Suppose we now test on a new
environment with parameters (jigy1, 0% +1) and assume Equatlon 15 holds with parameter .

Define k = mingcg ag . Then with probability > 1 — exp k(52 over the draw of an
OBt1 \/k_

observation from this new environment, we have

Assumption

1. Any test distribution with environmental parameters Ug,, 1s sufficiently far from the training means:

Ve € €, H{lin}llu Bl — Y Hell2 > (xf+5)<fe\/
(IS
z Define r = \/mereand construct B,, C R% as (

U B'r(:ue) U UBT(_He)

ecf ecf

s Ze € BT' 60
P (x) =< ¢ - and B = |pe
] : ze € BC, Bo




Proof of Theorem 6.1 —lemma D.1

* We construct a halfspace which is perpendicular to the line
connecting i, and pUg., and tangent to B,. This halfspace fully

contains B,, and the measure of this halfspace Is upper bounded
by:




Proof of Theorem 6.1

Theorem D.3 (Non-linear case, full). Suppose we observe E environments £ = {ey,es,...,egp}.
Then, for any € > 1, there exists a featurizer ®. which, combined with the ERM-optimal classifier

p = [ﬁc, Be:ERM 50]T, satisfies the following properties, where we define p. 4, := exp{—d. min((e—

1), (e—1)%)/8}:

1. Define o2, = max,c>. Then the regularization term of ®., B is bounded as

1 . A
5 S IVR @A €O (120, |edaohn exp(2et) + THlB) ).

ecf

2. ®., B exactly matches the optimal invariant predictor on at least a 1 — p. 4, fraction of the
training set. On the remaining inputs, it matches the ERM-optimal solution.

The risk of IRM 28



terative Feature Matching -- Toward Provable Domain
Generalization with Logarithmic Environments crenoziierstiveryy

* Strengthen the theorem 5.1

* No algorithm can approximate the optimal invariant classifier
IN expectation with sub-linear environment.

Theorem 3.2. Suppose E < ds. Under Assumption 3.1, there exists a constant ¢ > 0 such that, for any
estimator W, there exists a hyper-distribution over parameters P = P(u1, %1, {u2, 05} 1,S), such that if

we draw those parameters from P and generate data &, from the E environments parameterized by those
parameters, then

Ep(||w(&:r) — w* (Er)ll2] > c.

Provable OOD 29



Proof of Theorem 3.2

* Key idea:
* construct a hard instance to reduce the problem of finding the optimal
Invariant predictor to r-dimensional Gaussian mean estimation.

Setting: Proof:
Y ~ unif{+1} hard instance:
ZIY ~N(Y - p1,5,) € R AcR¥>" BeR™s A =1[I:04 |

Zo|Y ~ N(Y - us, 5) € R

Z = |Zy,Z,) € R
X =52 2y = Iy
1 has uniform distribution on the sphere of radius /r, 0§ ~ N(0,1), and pu§ ~ N(0,1,,).

B: top r rows {u;}i_, satisfy uzTuJ = 0 for i # 7, and |[u;[|=1

e T e\2 T\ E
w* = S (ST S) TS /181 (ST S) Sl WAm F Bis, ARAT (03 BB ey
where S, e R4x” Invariant classifier:

w* = A //r
Provable OOD 30



Proof of Theorem 3.2

* Reduce “find a classifier w” to a Gaussian mean estimation problem
where the mean parameter is 0° = w

~ d
min max||§* —0|2> c ST,
() P E

min max||w® — wl||2> ¢ when E < d,
O(Str) P

Provable OOD
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Moditfication of the covariance of spurious
feature to overcome the impossible results

Algorithm 1 Iterative Feature Matching (IFM) algorithm

Require: Invariant feature dimension r, target feature dimensions ro =d > ry > --- > rp = r, number of
training environments E = |&,.|, infinite samples {(X£, YY)}, ~ P, from each environment e € &,.
1: Let {&}]_, be a partition of &, such that for t < T, |&|= Q((rt_l —1r¢)/(ry —r —1)), and |Ep|= 3.
2: fort=1to T do
3: Find orthonormal U; € R"*"t=1 and C; € R"**"t such that for all e € &,

Exyyp[Ui... UL XXTU ..U |Y] = C,. (4.1)

4: Return classifier w = min,,cgr—1 % ZCE[E] Exyy~p l(Us... U1 X,)Y).
I

Main idea:
In each round we shrink the dimension by a constant factor using a constant number of environments. The main
theoretical challenge that remains is to show that in each iteration, with high probability, only spurious features are

projected out.
Provable OOD 32



Proof of Theorem 4.1

* Key idea:
* To prove IFM outputs a feature extractor U, ... UT that does not use the

spurious features, we need to show that the right d,; columns of matrix
Uy ...U,S are all-zero.

Lemma 5.1. If for all1 <t < T, |E|= E; = Q) (”r_tl—_” max {1,log ((L) ,log (d—s) }), and ET > 3,

—1 Tt—l)ds T’t—l
and Uy, ..., Ur are the orthonormal matrices returned by IFM, then with probability 1 — exp (—€(ds)), if we
write Up ... U1S = [A, B], where B € R"*4s  then B = 0,x4. .

* Since U is orthonormal, IFM outputs @ = w”

Provable OOD 33



Key proof of Lemma 5.1

. Stg)]a with high probablllty any one-layer feature extractor U, €
> that uses only spurious dimensions cannot match feature
covariances from Q(d./k,) environments.

* = feature extractor use at most d,/E; spurious dimensions.

* Step2 We can recursively apply this argument until we have O
spurious dimensions.



Verity the advantages brought by [FM

* ERM and IRM still suffer from linear environment complexity.

* 1.They construct a hard instance where the ERM solution has
worse-than-random performance on the test environments.

* 2.They prove there exists a feature extractor that only uses
spurious dimensions while satisfies IRM penalty.



Review

1. What is IRM

e 2. The difference between linear classification tasks and linear
regression tasks under invariant principle

* 3.The fallure case of IRM (Linear and non-linear)
* 4 What is IFM



Takeaway message

* 1.How to find the Iinvariant feature Is still an open question.
* |IRM fails
* [FM Is a provable algorithm with Logarithmic Environments

e 2.There Is some flaws with [FM
* [FM still belongs to distribution matching(DM) methods
* DM methods fails when the label distribution differs among environments
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